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L et the upward displacement of the rope at the displacement z from left end be Y (Z,t) .

It satisfies the wave equation with damping b:
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The two boundary conditions are
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1. oscillation of the vibrator at the left end: y (O,t) - Ae

2. the right end is fixed: y (a,t) =0
We introduce the conversion
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Hence, (1) becomes

Ty 19y 2bfy Zy 2 o it
—_— - =- Al- ) (k* - 2kb)e
ﬂzz 2 ﬂtz c Tt ( a)( ) ........ (3)
where k:ﬂ.
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The boundary conditions of y are

y(@@t) = y(Ot) =0
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The problem now becomes a standard forced oscillation on a string with its two ends fixed.
Its solutions can be found in many textbooks of intermediate mechanics (e.g.Walter Hauser's
Introduction to the principles of Mechanics, Addison-Wesley, 1965).

The solution is expressed as a sum of the normal modes,
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It is aresonance response when k =Kk

By putting y(zt) back into (2), weget y (z1).



