Salts and Solubility Activity 3 Solution Equilibrium and K_{sp}

Learning Goals: Students will be able to:

Describe the equilibrium of a saturated solution macroscopically and microscopically with supporting illustrations. (not covered in these questions)
Write equilibrium expressions for salts dissolving

•Calculate K _{sp} from molecular modeling.

Trish Loeblein updated July 2008

I simplified the reactions by omitting (aq), my students have found this helpful and they know that they must put it on tests.

 Table Salt
 Slightly Soluble Salts
 Design a Salt

1. Table salt dissolves in water: NaCl(s) \Rightarrow Na⁺ + Cl⁻

What is the correct K_{sp} expression if s is the molar solubility Sodium chloride?

a. $K_{sp} = s^2$ b. $K_{sp} = 2s^2$ c. $K_{sp} = s^5$ d. $K_{sp} = 4s^4$

Salt		
lons	Sodium	Chloride
Dissolved	181	181
Bound	19	19
Total	200 ÷	200 ÷
Water		
Volum	e: 5.00E-23	liters (L)

Table salt dissolves in water: NaCl(s) \Rightarrow Na⁺ + Cl⁻

$K_{sp} = [Na^+][Cl^-]$

For every NaCl molecule that dissolves there was one Na⁺ and one Cl⁻ put into solution, so if we let s equal the amount of NaCl that dissolved then the expression substitutes to be $K_{sp} = S^2$ 2. Silver arsenate dissolves in water: $Ag_3AsO_4(s) \Rightarrow 3Ag^+ + AsO_4^{3-}$

What is the correct K_{sp} expression if s is the molar solubility Silver arsenate?

a.
$$K_{sp} = s^2$$

b. $K_{sp} = 3s^2$
c. $K_{sp} = s^4$
d. $K_{sp} = 3s^4$
e. $K_{sp} = 27s^4$

3. What is the proper expression for the molar solubility s of AgCl in terms of K_{sp} ?

$K_{sp} = [Ag^+][Br^-]$ [Ag⁺]=[Br⁻] (44 of each are dissolved) $K_{sp} = s^2$ $s = (K_{sp})^{1/2}$

Answer to previous slide

$AgBr \leftrightarrow Ag^+ + Br^-$

4. A saturated solution of AgBr in 1x10⁻¹⁶ liters of water contains about 44 Ag⁺ and 44 Br⁻ ions as shown.

Suppose that K_{sp} were reduced to 2.5x10⁻¹³. How many Ag^+ ions would you expect to see at equilibrium ?

 $K_{sp} = 5.0 \times 10^{-13}$ Br $\cdot Br^{-16_{L}}$

a. 11 b. 22 c. 31 d. 44 e. 88

$$AgBr \leftrightarrow Ag^+ + Br^-$$

Suppose that K_{sp} were reduced to 2.5x10⁻¹³. How many Ag^+ ions would you expect to see at equilibrium ?

$$s = \sqrt{Ksp}$$

≈ 31

$$=\sqrt{2.5x10^{13}}$$

K_{sp} =
$$5.0 \times 10^{-13}$$

ed
ns
Silver Bromide
Dissolved 44 44

Answer to previous slide

5. Two salts have similar formulas XY and AB, but they have different solubility product constants.

XY:
$$K_{sp} = 1 \times 10^{-12}$$

- AB: $K_{sp} = 1x10^{-8}$
- Which one would be more soluble?
- A. AB
- B. XY
- C. The amount that dissolves would be the same.
- D. Not enough information

6. Two salts have similar formulas XY and AB, but they have different solubility product constants.

- XY: $K_{sp} = 1 \times 10^{-12}$
- AB: $K_{sp} = 1 \times 10^{-8}$
 - Which one would be more likely to precipitate?
- A. AB
- B. XY
- C. They behave the same
- D. Not enough information

