Tips for controls:

- To "Reset All", refresh your browser. **Reset** only restarts the Oscillator and wave string to a zero position.
- **Pulse** is very helpful to focus particularly on what happens to a wave as it travels in the medium and during reflection. Using **Low Tension** with pulse slows the motion, so makes for good demonstrations. Pressing **Pulse** a second time allows for analysis of superposition.
- You can **Pause** the sim and then set the parameters. In a demonstration, it would provide easy opportunity to ask "What if..?
- In most browsers, F11 will maximize the window; F11 is a toggle, so use it again to get back the tool bars.
- The rulers and other tools are draggable to allow interesting investigation. Select **Show Help** to get ideas.
- To demonstrate a standing wave set the **Amplitude** to 3 and the **Frequency** to 25. This will create a slightly imperfect standing wave.

Important modeling simplifications:

- The simulation is like a rope on the ground with transverse waves being propagated side to side with no gravitational effects or external friction.
- The string is modeled by using particles and can look like the string has dissociated if extreme conditions are set because the processing increments are not infinitely small.

Insights into student use / thinking:

- Students are very engaged and learn from the sim with little guidance
- Some students struggle with "Damping" which is like internal resistance. Some students may want to understand more and could use <u>Masses and Springs</u> ("Damping" is called "Friction" in this sim) or <u>Resonance</u> sim (the <u>Tips</u> give a mathematical definition).
- This sim may be helpful for students as an introduction to more difficult concepts like sound, earthquakes, or light.

Suggestions for sim use:

- For tips on using PhET sims with your students see: <u>Guidelines for Inquiry</u> <u>Contributions</u> and <u>Using PhET Sims</u>
- The simulations have been used successfully with homework, lectures, in-class activities, or lab activities. Use them for introduction to concepts, learning new concepts, reinforcement of concepts, as visual aids for interactive demonstrations, or with in-class clicker questions. To read more, see <u>Teaching Physics using PhET Simulations</u>
- For activities and lesson plans written by the PhET team and other teachers, see: <u>Teacher</u> <u>Ideas & Activities</u>
- Gold Star Activities: Middle school <u>Anatomy of a Wave by Jackie Esler</u>; High School <u>Waves on a String Inquiry Based by Trish Loeblein</u>; Undergrad <u>EM Wave Analogy</u> <u>by Noah Podolefsky</u>